คู่มือการใช้งาน

เครื่องวิเคราะห์สารผสมในรูปของไอออน Ion Chromatograph(IC)

ยี่ห้อ Dionex รุ่น ICS 3000

จัดทำโดย: นางสาว จรรจิรา วงศ์วิวัฒนา นางสาว สุชาดา อุดมพร

ฝ่ายวิเคราะห์ด้วยเครื่องมือ ศูนย์เครื่องมือวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยเทคโนโลยีสุรนารี

เครื่องวิเคราะห์สารผสมในรูปของไอออน Ion Chromatograph(IC)

หลักการ

Ion Chromatograph(IC) เป็นเทคนิคโครมาโตกราฟอีกเทคนิคหนึ่งที่ใช้วิธีการแยกสารผสมในสภาวะการ แตกตัวเป็นไอออน เช่นการวิเคราะห์โลหะในรูปประจุบวก ประจุลบ ตัวอย่างเช่น Na⁺ K⁺ Ca²⁺ Mg²⁺ Cl⁻ SO₄²⁻ เป็นต้น โดยอาศัยหลักการแลกเปลี่ยนประจุภายในคอลัมน์ในระบบประกอบด้วยตัวพาซึ่งเป็นเฟสเคลื่อนที่ใน ที่นี้เรียกว่า Eluent ส่วนมากจะเป็นสารละลายบับเฟอร์ ซึ่งเป็นตัวพาสารตัวอย่างเข้าสู่ Column (เฟสคงที่)ไอออน ที่อยู่ในเฟสเคลื่อนที่และไอออนที่ด้องการแยกในสารตัวอย่างจะมีประจุตรงข้ามกับไอออนที่อยู่ที่ผิวของเฟส คงที่ ไอออนในเฟสเคลื่อนที่และไอออนในสารตัวอย่างจะแข่งขันกันเข้าแลกเปลี่ยนกับประจุที่อยูที่ผิวของเฟส คงที่ โดยทั่วไปไอออนที่มีขนาดเล็กจะแยกออกมาก่อน Ion Chromatograph สามารถนำไปประยุกต์ใช้ในงาน ต่างๆได้อย่างหลากหลายเช่น การวิเคราะห์หาปริมาณ Cation, Anion, Amino acid และCarbohydrate เป็นต้น

เนื่องจาก เครื่อง IC เป็นเครื่องมือที่มีประสิทธิภาพในการแยกสูง ดังนั้นต้องมีความละเอียดทุกขั้นตอน ตั้งแต่กระบวนการเตรียมตัวอย่างจนกระทั่งถึงขั้นตอนการใช้เครื่องมือในการวิเคราะห์ผลการทดสอบ ในเนื้อหา ของหนังสือเล่มนี้จะกล่าวถึงขั้นตอนการใช้เครื่อง IC อย่างละเอียดพร้อมทั้งวิธีการบำรุงรักษาเครื่องมือเบื้องต้น เพื่อให้ท่านนำข้อมูลไปใช้ได้อย่างมีประสิทธิภาพ จุดประสงค์

- 1. เพื่อให้ผู้ใช้งานทราบขั้นตอนการใช้เครื่อง IC ได้อย่างถูกต้องและมีประสิทธิภาพ
- 2. ผู้ใช้งานสามารถบำรุงรักษาเครื่องมือเบื้องต้นได้

ขอบเขต : ใช้สำหรับบุคคลที่มีส่วนเกี่ยวข้องในการใช้เครื่อง IC ยี่ห้อ Dionex รุ่น ICS 3000 เอกสารอ้างอิง

- 1. ICS-3000 Ion Chromatography System Operator's Manual, Revision 01, Dionex 2005
- 2. แม้น อมรสิทธิ์, อมร เพชรสม Principle and Techniques of Instrumental Analysis, 2553

ขั้นตอนการใช้งานเครื่อง IC

<u>1.ข้อควรรู้และระมัดระวั</u>ง

1. ตัวอย่างที่จะวิเคราะห์ควรเป็นสารละลายที่ไม่มีตะกอนต้องกรองผ่านกระคาษกรอง(membrane) 0.45μm หรือ 0.2 μm ก่อนเข้าเครื่อง และต้องเลือกชนิคของMembrane ให้เหมาะสมกับสารที่ใช้

2. ควรประกอบคอลัมน์และตรวจสอบอุปกรณ์ต่างๆให้เรียบร้อยก่อนใช้เครื่อง

 หลีกเลี่ยงการใช้สารที่มีฤทธิ์กัดกร่อน ไม่ควรมี pH ต่ำกว่า 2 และpHสูงกว่า 14 เพราะจะทำให้เกิดความเสียหายต่อ อุปกรณ์ได้

4. น้ำ DI ควรมีค่าความต้านทานไฟฟ้า 18.2 Megohm-cm ควรใช้น้ำที่เตรียมใหม่เสมอ

5. Eluent ที่ใช้ควรเป็นเกรด Low carbonate เช่น NaOH และ Sodium acetate

6. กระคาษกรองที่ใช้ไม่ควรทำจากวัสดุ cellulose หรือ polysulfone

7. ถ้าไม่ได้ใช้งานต่อเนื่องเป็นเวลา 2-3 วันให้เก็บ column ไว้ในสารตามคำแนะนำของ columnแต่ละชนิดแล้วปิด column หัว-ท้ายให้แน่นไม่ให้อากาศเข้าไป

8. ไม่ให้ใช้สาร MeOH หรือ organic solvent ในการล้างสาย Auto sample หรือล้างระบบภายในเครื่อง ให้ใช้ 20 ppm sodium azide หรือ น้ำ DI ที่เตรียมใหม่ๆเท่านั้น

7. สารที่ใช้เป็น Eluent ควรเตรียมให้พอดีต่อการทดสอบในกรั้งนั้น

8. สภาวะที่ใช้วิเคราะห์อุณหภูมิไม่ควรเกิน 50 °C และความคันไม่ควรเกิน 3500 psi

8. ทิ้งของเสียลงในภาชนะที่เตรียมไว้ และในขณะเดินเครื่องควรเฝ้าระวังไม่ให้ของเสียที่ออกจากเครื่องเต็มขวด

9.ปีคฝาขวคและตรงตำแหน่งรอยต่อต่างๆที่ใช้รองรับของเสียด้วย parafilm หรือ foil ที่ออกจากเครื่องให้สนิทเพื่อป้องกัน ไอสารระเหยออกมา

10. หากพบปัญหาหรือข้อสงสัยใดๆให้แจ้งเจ้าหน้าที่ทันที

<u>2. ส่วนประกอบของเครื่องมือ</u>

- Auto sample : เป็นระบบฉีดสารตัวอย่างโดยอัตโนมัติ มีถาดใส่ตัวอย่างสำหรับวางขวด vial ขนาด 2 ml ได้ 100ขวด สามารถฉีดตัวอย่างได้อย่างต่อเนื่อง 100 ตัวอย่าง
- 2. Detector and Column compartment : ประกอบด้วย
 - 2.1 Detector 2 ชนิดคือ 1. Electrochemical detector สำหรับงานวิเคราะห์กรดอะมิโน และคาร์ โบไฮเดรต 2.
 Conductivity detectorสำหรับงานวิเคราะห์อิออนประจุบวก(Cation) และอิออนประจุลบ(Anion)
 - Column สามารถใส่ column ได้พร้อมกัน 2 column และสามารถวิเคราะห์ได้พร้อมกัน 2 Applications: Column ที่มีอยู่คือ

- 1. AS12A สำหรับงานวิเคราะห์อิออนประจุลบ(Anion)
- 2. AS19A สำหรับงานวิเคราะห์อิออนประจุลบ(Anion) ที่ให้เครื่อง EG เตรียม eluent
- 3. CS12A สำหรับงานวิเคราะห์อิออนประจุบวก(Cation)
- 4. PA 10 สำหรับงานวิเคราะห์กรดอะมิโน
- 5. PA 20, MA1 สำหรับงานวิเคราะห์คาร์ โบไฮเครตที่เป็น mono, di -saccharide
- 6. PA200สำหรับงานวิเกราะห์การ์โบไฮเดรตที่เป็น Polysaccharide
- 2.3 Injection valve ทำหน้าที่ load และ inject ตัวอย่างเข้าสู่ Column
- Eluent : เป็นตัวพาสารตัวอย่างเข้าสู่ column สามารถใส่ eluent ได้พร้อมกัน 4 ขวด eluent ที่ใช้ต้องอยู่ ภายใต้บรรยากาศก๊าซ N,
- 4. Dual Pump: ประกอบด้วย Pump 1 และ Pump 2
 - Pump 1: เป็น Gradient pump สำหรับงานวิเคราะห์กรดอะมิโน และคาร์โบไฮเครต
 - Pump 2: เป็น Isocratic pump สำหรับงานวิเคราะห์อิออนประจุบวก(Cation) และอิออนประ

จุลิบ(Anion)

 Eluent Generator(EG) :เป็นเครื่องช่วยเตรียม eluent ให้อัตโนมัติ สำหรับ EG ที่มีอยู่นี้ใช้สำหรับงานวิเคราะห์อิออน ประจุลบ(Anion)

<u>3. ขั้นตอนการเปิดเครื่อง</u>

- 1. เปิด N₂ gas ที่ความดัน 30 psi
- 2. เปิด UPS
- 3. เปิด Auto sampler, Detector and Column compartment, และ Dual Pump
- 4. เปิด EG สำหรับงานวิเคราะห์อิออนประจุลบ(Anion) ที่ใช้ column AS19A
- 5. เปิด Computer

4.ขั้นตอนการเปิด Program

 Double click ที่ chromeleon Server สัญลักษณ์เป็นตัวกิ้งก่าสีเขียวอยู่มุมล่างด้านขวามือจะมีข้อความว่า Chromeleon serve is not running(ดังรูปที่1) ให้กด start รอสักครู่จะขึ้นกำว่า Chromeleon server is running idle เสร็จแล้วปิดหน้านี้

🐝 Chromeleon Server Monitor	
Status Chromeleon Server is not running.	Close Help
Start Stop	Quit Monitor

รูปที่1 แสดงการเปิด program chromeleon Server

- Double click ที่ program chromeleon สัญลักษณ์เป็นตัวกิ้งก่าสีเขียวอยู่บน Desktop เพื่อทำการ connect Software เข้ากับตัวเครื่อง ให้สังเกต ไฟสีเขียวที่ตัวเครื่องจะขึ้นที่ตำแหน่ง connect
- click ที่ default panel tabset แล้ว Double click ที่ My computer แล้ว click ที่ chromeleon Server แล้ว กด OK (ดังรูปที่ 2)

Connect to Chromeleon Serve	r 🔀
Computer: SUT Protocol: My Computer Enter connection information manually or pick a Chromeleon Server from the list at right.	 By Computer Chromeleon Server By Computer Chromeleon Server Page Network Neighborhood
OK Cancel	Help

รูปที่ 2 แสดงการ connect software กับ ตัวเครื่อง

จะปรากฎหน้าต่าง 2 บาน คือ Conductivity และ Electrochemical สามารถใช้งานได้พร้อมกัน หรือเลือกเฉพาะหน้าต่างที่ต้องการใช้ก็ได้ ดังรูปที่ 3

Panel Tabset1					
Conductivity_EG 💱 👫	Electrochemical 💱 🎋				
Home Sequence Control Status Autosampler Isocratic Pump Elue	Home Sequence Control Status Autosampler Gradient Pump Dete				
System Show Audit Trail Start up Shut Down Elapsed Time:	System Show Audit Trail Start up Shut Down E				
Il Heater - Off	0 psi				
oint 0.00 mM EluGen-OH EGC_1	0.250 ml/min				
	Motor - Off				
Position	Position				

ดังรูปที่ 3 แสดงหน้าต่าง Panel Tabset ทั้งสอง Applications

5.ขั้นตอนการ Cleanup system

หลังจากต่ออุปกรณ์ทุกอย่างเสร็จเรียบร้อยแล้วต้องทำการ Cleanup system ก่อนเริ่มการวิเคราะห์ มีวิธีการคังนี้

1. ในหน้าต่าง Panel Tabset ให้เลือก Conductivity และ Electrochemical ตามที่ต้องการจะปรากฏเมนูต่างๆดังนี้

Home	Sequence	Status	Auto	Pump	Detector	EC/Cond.	3D
	control		sampler		compartment	Detector	Amp.plot

- ไล่ฟองอากาศออกจากระบบโดยคลายปุ่มที่ Priming Knob ตรงส่วนของ Dual pump มาครึ่งรอบแล้ว click ที่ เมนู Pump ตั้ง Prime rate ที่ Prime control 5 ml/min แล้ว click ที่ prime-on/off เครื่อง(Pump)จะทำงานโดยไล่ ฟองอากาศออกจากระบบเป็นเวลาประมาณ 5 นาที(ดังรูปที่ 4) โดยจะทำการไล่ฟองอากาศทีละสายโดยsetให้เป็น 100%A 100%B 100%C และ100%D ตามลำดับ
- เมื่อไล่ฟองอากาศเสร็จแล้วให้ปิดปุ่มที่ Priming Knob ทำการล้าง Column โดยตั้ง Flow rate เ ป็น 0.25 หรือ 1.0 ml/min ที่ Flow control แล้ว click ที่ Motor-on/off ใช้เวลาประมาณ 30-60 นาที

Panel Tabset1 Help	×
Electrochemical 🔯 📲	
Home Sequence Control Status Autosampler Gradient Pump Detector Compart EC Detector 3D Amp Plot	_
System Log (Audit Trail)	
134:05 PM Chromeleon server version 6.70 Build 1820 started (serial number 32435). 1 34:08 PM {Pump_1} DP-3000 @ USB-06040102 - DP-3000 ISO/LPG - Serial # 6040102 - Firmware Version	
2.72 1:37:09 PM User (Administrator) from SUT has connected to timebase Electrochemical.	
31:39:57 PM User (Administrator) from SUT has acquired control over timebase Electrochemical.	
Connected	
Flow Control	-
Motor - Off Flow: 0.250 ml/min + Minimum Pressure: 200 psi :	Ŀ
Prime Control Maximum Pressure: 3500 psi	Ŀ
Prime - Off Duration: 300 s	
Prime Rate: 5.000 ml/min 2000 Construction of the second s	_
Eluent Level Display	
A B C D Gradient Control	
)
-1 -1 -1 9.4 <u>-</u> %C	

ดังรูปที่ 4 แสดงการเปิด-ปิดของ prime control และ Flow control

<u>5.ขั้นตอนการตั้งค่าต่างๆ</u> แบ่งเป็น 3 ส่วนดังนี้

1. Program file: ใช้สำหรับตั้งค่าต่างๆ(ในหน้าต่าง Panel Tabset) ให้เหมาะสมกับงานที่ต้องการวิเคราะห์ มี รายละเอียดดังนี้

> Pump: สำหรับตั้งค่า Flow rate(ml/min) และ % ของ Eluent ในสาย A B C และD Detector compartment : สำหรับตั้งค่าอุณหภูมิของ column oven

Panel Tabset1										
Electrochemical 23 H										
System Log (Audit Trail)										
1:34:05 PM Chromeleon server version 6.70 Build 1820 started (serial number 32435). 1:34:08 PM {Pump_1} DP-3000 @ USB-06040102 - DP-3000 ISO/LPG - Serial # 6040102 - Firmware Version 2.72										
1:37:09 PM User (Administrator) from SUT has connected to timebase Electrochemical.										
	Detector Comportment			Valves	<u> </u>					
	Connected	Sot Doint	<u></u>	InjectValve_1:	LoadPosition 💌					
	Carial Number: 06040463	Set Follit.								
	Senarnumber, 00040105	Mode:			-	Input TTLs				
	Upper Door is Closed	Temperature:			-	:				
	Lower Door is Closed	Status:			-					
					-					
		Column_IC-	30.00 °C		-					
	Set Point:	Set Point:	<u>30.00 C</u>		-					
	Mode:	Mode:	Off 🗾		-					
	Temperature:	Temperature:	24.29 °C		_					
	Status:	Status:	Ready		-					
			· · ·		-					

รูปที่ 5 แสดงการตั้งค่าอุณหภูมิของ column ในส่วนของ Detector compartment EC/Cond. Detector 1. Conductivity ตั้งค่าSuppressor type, Suppressor current(mA)

🕫 Panel Tabset1									
	Conductivity_EG 🔀 👫								
Home Sequence Control Status Autosampler Isocratic Pu	ump Eluent Generator Detector Compart Co	ond. Detector							
System Log (Audit Trail) 1:3852 PM User (Administrator) from SUT has disconnected from Imebase Conductivity, E0. 1:3852 PM User (Administrator) from SUT has connected to Imebase Conductivity, E0. 1:3853 PM User (Administrator) from SUT has connected to Imebase Conductivity, E0. 1:3853 PM User (Administrator) from SUT has connected to Imebase Conductivity, E0. 1:3853 PM User (Administrator) from SUT has connected to Imebase Conductivity, E0. 1:3853 PM User (Administrator) from SUT has connected to Imebase Conductivity, E0.									
Conductivity Detector Settings	Suppressor Settings	Analog Out							
CDet1: 06040024 Autozero	Type: ASRS_4mm -	Range:							
Signal: 11573 9834 US	Mode: Off 💽	Full Scale:							
	Current: 112 mA	Offset Level:							
Total Signal: 11573.983 µS	Calculate Current	Polarity:							
Calibration Rise Time: 0.50 s 🔶	#	20.0 ul from Pos 1							
Data Collection Rate: 5.0 Hz	10.0	CD_1_Total CD_1							
Cell Heater	7.5-]								
Cell Heater Mode: Off									
Cell Heater Set Point 35.00 °C	5.0-								
Cell Heater Temp: 25.60 °C	2.5								
Cell Heater Status: At_setpoint									
	0.00 1.00 2.0	0 3.00 4.00 5.00							

รูปที่ 6 แสดงการตั้งค่า Suppressor type และ Suppressor current

Panel Tabset1									
	Electrochemical 💱 👫								
Home Sequence Control Status Autosampler Gradien	t Pump Detector Compart EC Detector 3D Amp Plot								
System Log (Audit Trail)									
1:34:05 PM Chromeleon server version 6.70 Build 1820 started (serial number 32435). 1:34:08 PM (Pump_1) DP-3000 @ USB-06040102 - DP-3000 ISO/LPG - Serial # 6040102 - Firmware Version 2.72 1:37:09 PM User (Administrator) from SUT has connected to timebase Electrochemical. 1:39:57 PM User (Administrator) from SUT has acquired control over timebase Electrochemical.									
Electrochemical Detector Settings	Waveform and Voltage Settings	Analog Out							
EDet1: 06040196	Select or edit an existing Waveform Waveform	Range:							
Signal: 0.0000 nA	Waveform Name:	Full Scale:							
Total Signal: 0.000 pA	DC Voltage: 0.000 V	Offset Level:							
	Cell Voltage: Off	Polarity:							
	400 7 1	20.0 µl from Pos. 1							
Mode: CV Mode DCAmp -	0.000	ED_1_Total ED_1							
Rise Time: 0.50 s	300-								
Data Collection Rate: 1.00 Hz 💽	200-								
Reference Electrode: PH									
Ref. Electrode pH: 12.6	100-								
	0.00 0.13 0.25 0.38 0.50 0.8	3 0.75 0.88 1.00							

Electrochemical เลือก reference electrode ในช่อง Waveformให้ตรงกับงานที่วิเคราะห์

รูปที่ 7 แสดงการเลือก reference electrode และดูค่าsignal

ตั้งค่า EGC concentration (mM) EG:

รูปที่ 8 แสดงการตั้งค่า EGC concentration

Sequence: ใช้สำหรับใส่ชื่อ ตำแหน่งของตัวอย่าง ตาม Auto sampler ใน Sequence ประกอบด้วย Program file, method ดังรูปที่ 9

No.	Name	Туре	Pos	Inj. Vol. Program	Method	Status	Inj. Date/Tir
1	👩 std 2.5/2	Unknown	1	25.0 AAA GABA3	testGABA	Finished	8/5/2008 1
2	👩 std 5/5	Unknown	2	25.0 AAA GABA3	testGABA	Finished	8/5/2008 1:
3	👩 std 12.5/10	Unknown	3	25.0 AAA GABA	testGABa	Finished	8/5/2008 1:
4	👩 std 25/20	Unknown	4	25.0 AAA-da	AAA	Finished	8/5/2008 3:
5	👩 std 50/50	Unknown	5	25.0 AAA-da	testGABA	Finished	8/5/2008 4:
6	👩 stdGABA	Unknown	6	25.0 AAA-da	testGABA	Finished	8/5/2008 6:
7	👩 Re-Blank	Unknown	7	25.0 AAA-da	testGABA	Finished	8/5/2008 7:
8	👩 sample	Unknown	8	25.0 AAA-da	testGABA	Finished	8/5/2008 8:
9	👩 sample-dilute2	Unknown	9	25.0 AAA-da	testGABA	Finished	8/5/2008 11
10	📮 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
11	🖸 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
12	🖸 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
13	🛱 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
14	🖸 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
15	🖸 System	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008
,16	🖪 Svstem	Blank	11	25.0 AAA-da	AAA	Finished	11/21/2008

รูปที่ 9 แสดงตารางการใส่ชื่อตัวอย่างในโปรแกรม Sequence

 Method: เป็นหน้าที่แสดงChromatogram ที่วิเคราะห์ได้ ใช้สำหรับประมวลผลการวิเคราะห์เช่น การสร้าง กราฟมาตรฐาน และแสดงผลต่างๆเช่น retention time, Area peak, high peak เป็นต้น

4. สรุปแล้วเราต้องมี file ในการทำงานทั้งหมด 3 file คือ Program file, Sequence และ Method แล้วทำ การ save as ไว้ [Program file (*.pgm), Method file(*.qnt)]

5. <u>ขั้นตอนการ Start run</u>

1. click ที่ browser เลือก sequence ที่ save ชื่อไว้แล้วจะปรากฏเมนูดังนี้

Name									
Name Amino.pgm Amino.qnt ให้ copy Program file และ Method file กี่ save ไว้แล้วมาไว้ที่หน้าด่างนี้									
No.	Name	Туре	Position	Inj. Vol.	Program	Method	Status		

Chromeleon - SUT_local\Sequence\Amino\Chek after validate\TEST AMINO - Browser										
File Edit View Workspace Qualification Batch Tools Window Help										
	@				4° 131	KE U			فه 🛨 جاله	N MA COL
	Ø.	~				122.02 123		N YE YE N	2017 + 24	·
SUT_local\Sequence\Amino\Chek after validate\TEST AMINO - Bro	wse									
⊡ 🧐 CM_CD	N	ame				Ti 🔺	tle		Timebase	Last Updat
🗄 🕰 SUT_local		<u>م</u>	AA GABA.pgm						electrocher	nical 6/10/2008 (
🗄 🚹 Archemica		<mark>۹</mark> ۸/	AA GABA2.pgm			A	mino Da		Electrocher	nical 7/23/20081
I = - CM_OQ		° AA	AA GABA3.pgm			A	mino Da		Electrochen	nical 7/23/20081
⊕ Conduct ☐ Conduct		۹ A	\A.pgm						Electrocher	nical 5/31/20061
E Conductivity		<u>1</u> A/	VA.qnt							5/27/2009 4
Conductivity_EG Conductivity_EG		K A/	A-da.pgm						Electrochen	nical 11/21/2008
		Ar Ar	nino#2.pgm						Electrochen	nical 5/25/2006 t
		T Ar	nino.pgm nino.get						Electrochen	701/0008 /
Electrochemical	l lf	2	BA10-6-50 ant							6/10/2008 1
🗉 🚹 Installation		sti	no.nam						Electrocher	nical 7/23/2008 1
🗊 🧰 Method		tes	t-AAmixGABA23-7-5	1.pts						7/23/2008 4
😥 💼 Program File		te:	tGABA.qnt							5/27/2009 4
E- Equence	<	1								>
E Amino		- IN		Tumo	Deel	lei Mel	Drawram	Madaaal	Chatura	Lei Dete Ti
Chek after validate		1 8	anie del 250	Туре	1	111, 201	. [Program	tootCARA	Finished	9/5/0009 1
			siu 2.5/2	University		20.0		testOADA	Cisished	0/5/2000 1
		4	810 5/5	UNKNOWN	2	25.0	J AAA GABAS	IESIGADA	Finished	0/5/2000 1.
GABA2 200322		3	std 12.5/10	UNKNOWN	3	25.0	J AAA GABA	IESIGADa	Finished	8/5/2008 1:
GABA3 280552		4	std 25/20	Unknown	4	25.0	JAAA-da	AAA	Finished	8/5/2008 3:
GABA4 280552		5 6	1 std 50/50	Unknown	5	25.0	J AAA-da	testGABA	Finished	8/5/2008 4:
GABA5 280552		6	stdGABA	Unknown	6	25.0) AAA-da	testGABA	Finished	8/5/2008 6:
GABA6 280552		7	Re-Blank	Unknown	7	25.0) AAA-da	testGABA	Finished	8/5/2008 7:
GABA7280552		8	sample	Unknown	8	25.0) AAA-da	testGABA	Finished	8/5/2008 8:
TEST AMINO		9	sample-dilute2	Unknown	9	25.0) AAA-da	testGABA	Finished	8/5/2008 11
🕀 💼 GABA	1	0	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
Amino 13-Jun-07		1	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
a Kawtung	1	2	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
Nampha 💭 Nampha	1	3	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
Tark initial	1	4	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
Try MINO 22.111.52	1	5	System	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2008
TryAMINO 22-500-52	1	6 7	Svstern	Blank	11	25.0) AAA-da	AAA	Finished	11/21/2005
		•								▶

รูปที่ 10 แสดง Sequence file

No. เป็นลำคับการ run sample

Name ใส่ชื่อตัวอย่าง

Type ใส่ประเภทของตัวอย่างนั้นเช่น blank, standard, unknown เป็นต้น

Position ตำแหน่งของตัวอย่างที่วางในถาด auto sample สามารถใส่ได้ตั้งแต่ 1-100

Inj. Vol. ปริมาณสารตัวอย่างที่ฉีดเข้าไป (µ1)

Program ให้ click เลือก ชื่อ Programที่ต้องการ run ซึ่งประกอบไปด้วย condition ของเครื่องมือและการตั้งค่าต่างๆ ที่ใช้ในการวิเคราะห์

Method ให้ click เลือกชื่อ Method ที่ต้องการดูผล

Status แสดงสถานะของตัวอย่างนั้นว่าวิเคราะห์เสร็จแล้ว(finish) หรือถูก interrupt หรือยังไม่ได้วิเคราะห์(single)

หรือกำลังวิเคราะห์อยู่ (Running)

เสร็จแล้วอย่าลืม save ชื่อ sequence

2. ถ้าต้องการดูรายละเอียดหรือต้องการแก้ไขในprogram file ให้ double click ที่ชื่อ program file เช่น Amino.pgm ก็จะปรากฏรายละเอียดที่เราตั้งค่าต่างๆไว้ สามารถเพิ่มเติมหรือแก้ไขในหน้านี้ได้เลยเสร็จแล้วอย่าลืม save

3. ไปที่หน้าต่าง Panel Tabset

Home	Sequence	Status	Auto	Pump	Detector	EC/Cond.	3D	
	control		sampler		compartment	Detector	Amp.plot	

: เลือก Sequence control จะปรากฏเมนูต่างๆ ให้ click ที่ Load Sequence แล้วเลือก sequence ที่ save ไว้

: ถ้า on baseline ไว้ ให้กด Acq off เสร็จแล้วกด Start batch เกรื่องจะทำการ run ให้จนเสร็จตาม sequence นั้นๆ

👋 Ch	🖗 Chromeleon - [Panel Tabset1] 📃 👘 🔀									
문 Edit View Workspace Qualification Control Batch Window Help _ 리 가										
Electrochemical 22 H										
Hom	Home Sequence Control Status Autosampler Gradient Pump Detector Compart. EC Detector 30 Anno Pick									
S	/stem Log ((Audit Trail)			- KAV	WTUNG+Nam	ipha #17	Nampha	1-MS33-100x	25.0 ul from Pos. 42
Ē	2:03:33 PM 12.	000 %D = 0.0			319 JnC				< AWTUNG+Nampha #16 N	ampha-MS33-50v (ED_1)
	2:03:33 PM 12.	000 Curve = 5				.256		11.		ED 1 Total
	2:07:33 PM 16.	000 %B Gradier	nt Start =	32.0, End = 24.0, Duration = 8.000						ED 1
	2:07:33 PM 16.	000 %C Gradier	nt Start =	0.0, End = 40.0, Duration = 8.000	125			<u>Ι</u> Ω		_
	2:07:33 PM 16.	000 %D = 0.0			1253	k .				
	:: 24.00	10 Flow = 0.250	[ml/min]		_	1 N	N		$\sim - \wedge \alpha$	
						, .~				22.280 min
R	un Time: 🛛 4	10 000 min	Els	msed: 22 305 min	-40-1			· · · ·	· · · · · · · ·	
	an mno.			,p300. 11.000 mm	0.0		5.0	10.0	15.0	20.0 23.0
1 .	Create App	olication	2.	Prepare System	3. Execute Ap	oplication —	System M	laintenance		
	Create F	Program		Application Wizard	Hold	Continue	Daily	Audit Trail		
	Create S	Sequence		Acq On Acq Off	Start	Batch	Consum	able Change		
			-10-							
	Edit Pr	rogram		Load Sequence	Abort	t Batch	Eluer	nt Change		
					l'					
Se	equence —									
N	lo Po Inj. Vol	I. Program	Status	Inj. Date/Time Name	Туре	Method	Sequence			<u>~</u>
	1 31 25.0	Amino	Finishe	8/4/2009 3:16:46 System 8/4/2009 5:20:13 System	Blank	Amino .	Amino\KAWTUNG	+Nampha		
	3 32 25.0	Amino	Finishe	8/4/2009 6:42:17 Std500x+2pc	mGAB Standard	Amino	Amino\KAWTUNG	s+Nampha		
	4 32 25.0	Amino	Finishe	8/4/2009 8:04:22 Std500x+2pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
	5 32 25.0	Amino	Finishe	8/4/2009 9:26:28 Std500x+2pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
	6 32 25.0	Amino	Finishe	8/4/2009 10:48:3 Std500x+2pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
	/ 32 25.0	Amino	Finishe	0/5/2009 12:10:3 Std500x+2pp 9/5/2009 1-22-44 Std500x+2 5	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
	9 34 25 0	Amino	Finishe	8/5/2009 2:54:49 Std200x+5nr	mGAB Standard	Amino	Aminn\KAWTUNG	+Nampha		
1	0 35 25.0	Amino	Finishe	8/5/2009 4:16:54 Std100x+10p	pmGA Standard	Amino	Amino\KAWTUNG	+Nampha		
1	1 36 25.0	Amino	Finishe	8/5/2009 5:38:59 Std50x+20pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
1	12 37 25.0	Amino	Finishe	8/5/2009 7:01:04 Kawtung10:5	0 Unknow	Amino .	Amino\KAWTUNG	+Nampha		
1	3 38 25.0	Amino	Finishe	8/5/2009 8:23:10 KawtungSp2	J:50 Unknow	Amino .	Amino\KAWTUNG	+Nampha		
	4 39 25.0	Amino	Finishe	8/5/2009 9:45:16 Kaw-K1	Unknow	Amino .	Amino\KAWTUNG	+Nampha		
	6 41 25.0	Amino	Finishe	8/5/2009 12:29:2 Nampha-MS	3-50x Unknow	Amino	Amino\KAWTUNG	s+Nampha		
1	7 42 25.0	Amino	Running	8/5/2009 1:09:35 Nampha-MS3	3-100 Unknow	Amino	Amino\KAWTUNG	+Nampha		
1	8 32 25.0	Amino	Single	Std500x+2pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
1	9 33 25.0	Amino	Single	Std400x+2.5	ppmG Standard	Amino .	Amino\KAWTUNG	+Nampha		
2	20 34 25.0	Amino	Single	Std200x+5pp	mGAB Standard	Amino .	Amino\KAWTUNG	+Nampha		
4	21 35 25.0	Amino	Single	Std100x+10p	pmGA Standard	Amino .	Amino\KAWTUNG	+Nampha		
	23 37 25 0	Amino	Single	SubUX+20pp Kawtung10-5	In Unknow	Amino	Amino\KAWTUNG			
	24 38 25 0	Amino	Single	Kawtung10.0	1:50 Unknow	Amino	Amino\KAWTUNG	+Nampha		
2	25 39 25.0	Amino	Single	Kaw-K1	Unknow	Amino	Amino\KAWTUNC	+Nampha		
	al 40 25.0	Amino	Single	K/2006-₽1	Unknow	Amino	Amino\k/A\WTUNG	+Namnha		<u>~</u>
l '										
4.0 min,	-4 nC									Administrator Electrochemical Acquisition
🛃 s	tart 🛛 🥶	🥘 🧭 👋	🍄 Chror	neleon - [Panel						🤆 🥵 2:13 PM

รูปที่ 11 แสดงขั้นตอนการสั่ง Start run

ถ้าต้องการดูสถานะทั้งหมดกดที่ Home ถ้าต้องการดู Chromatogram กดที่ Status

6. <u>การวิเคราะห์อิออนประจุลบ(Anion Application)</u>

<u>7.1 Column: AS12A</u> Eluent: 2.7mM Na₂CO₃ : 0.3mM NaHCO₃ Dual pump: No.2 Flow rate: 1.5ml/min Suppressor Type: ASRS-Ultra II Suppressor Current: 22mA Detector: Conductivity <u>การต่อสาย Eluent:</u> นำบวด Eluent ต่อกับสาย A ของ Pump 2(สาย A ที่มีอยู่สายเดียว) ต่อสาย Nitrogen gas

<u>การต่อ Column</u>: โดยต่อสายที่ label ว่า AS12Aด้านปลายที่อยู่ใน Dual pump กับสายที่ pump 2 และต่อ สายที่ label ว่า AS12A ด้านปลายที่อยู่ในDetector compartment กับ injection valve ที่port 2 จากนั้นต่อ Guard column และ column AS12A กับ injection valve ที่port 3

การต่อ Columnเข้ากับ suppressor:

ต่อสายที่ออกจาก column เข้ากับ Eluent in ของ suppressor ต่อสายที่ออกจาก Eluent out เข้ากับ Cell in ออกจาก cell out เข้าใน regen in ต่อสายที่ label ว่า suppressor eluent ที่ eluent out ของ suppressor

wou for laber it suppressor erdent if erdent

7.2 Column: AS19A

Eluent: EG เตรียมให้

การ clean up system: Flow rate: 1.0ml/min

EGC concentration: 80 mM

Suppressor Type: ASRS-Ultra II

Suppressor Current: 198 mA

รอจนค่า CD_1 total อยู่ที่ประมาณ 1 µs

การ Equilibrate system: Flow rate: 1.0ml/min

EGC concentration: 10 mM

Suppressor Type: ASRS-Ultra II

Suppressor Current: 112 mA

รอประมาณ 10นาที่ ตรวจสอบ Baseline

7. <u>การวิเคราะห์อิออนประจุบวก (Cation Application)</u>

Column: CS12A Eluent: 22mN H₂SO₄ Pump: No.2 Detector: Conductivity Flow rate: 1 ml/min Suppressor Type: CSRS-Ultra II Suppressor Current: 65mA หมายเหตุ: การต่ออุปกรณ์เหมือนข้อ 7 แต่เปลี่ยนเป็นสายที่ label ว่า CS12A 8. <u>การวิเคราะห์กรดอะมิโน (Amino acid Application)</u>

Column: PA10

Eluent: Gradient mixing : DI water/250mMNaOH/1M Sodium Acetate

Pump: No.1

Detector:Electrochemical

Flow rate: 0.25 ml/min

Working electrode: Gold สำหรับวิเคราะห์กรดอะมิโน แบบใช้ได้ 1 อาทิตย์แล้วทิ้ง

Reference electrode: pH,Ag,Ag/Cl

การต่อสาย Eluent: นำขวด DI water ต่อกับสาย A ของ Pump 1(สาย A B C D ที่มีอยู่สี่สาย)

ขวด 250mMNaOHต่อกับสาย B ขวด 1M Sodium Acetate ต่อกับสาย C ต่อสาย Nitrogen gas ของ eluent แต่ละขวด

Prime pump ผ่าน chromeleon software โดย Prime สาย A B C ตามสำคับ

การต่อ Electrochemical cell กับ Column

ล้าง Reference electrode ด้วย DI water(ในกรณีที่นำ Reference electrodeออกจากที่เก็บ)

ต่อ Reference electrode และ Working electrodeลงใน Electrochemical ccell

จากนั้นต่อ Guard column และ column PA10 กับ injection valve ที่port 3

ต่อสายที่ออกจาก column เข้ากับ cell in

ก่อน start run ให้รองนค่า background ต่ำกว่า 130 nC

9. <u>การวิเคราะห์การ์โบไฮเดรต (Carbohydrate Application)</u>

Column: MA1, PA20, PA200

Eluent: Gradient mixing : DI water/250mMNaOH/1M Sodium Acetate

Pump: No.1

Detector:Electrochemical

Flow rate: 0.5 ml/min

Working electrode: Gold สำหรับวิเคราะห์การ์โบไฮเครต แบบใช้ได้ 1 อาทิตย์แล้วทิ้ง หรือแบบใช้ได้ เป็นปี

Reference electrode: pH,Ag,Ag/Cl

10. <u>การประมวลผลการวิเคราะห</u>์

เมื่อทำการวิเคราะห์เสร็จแล้ว Chromatogram จะถูกบันทึกไว้ ผู้ใช้ต้องทำการ integrateและกำหนดชื่อ ให้peak แต่ละ peakก่อนที่จะทำการคำนวณปริมาณของpeakต่างๆซึ่งขั้นตอนต่างๆจะถูกรวมไว้ที่ Quantification method(QNT file) โดยมีขั้นตอนดังนี้

1. การเปิด Method.qnt:

: เมื่อวิเคราะห์สารมาตรฐานเสร็จแล้วไปที่หน้า Browser

: เลือก file sequence ที่ใช้ run สารมาตรฐาน

: Double click ที่ชื่อสารมาตรฐานนั้นๆ

: จะปรากฏเป็น peak ของสารมาตรฐานดังรูปแล้วเลือก QNT.Editor ที่ menu ด้านบน

:ค้านล่างของหน้าต่างจะประกอบด้วยเมนูต่างๆดังนี้

🧏 File Edit View Workspace Qualification	Window Help						
D 🖻 🖬 📲 🛅 🎒 🐰 🖻 🖻 🕅	6 ♥ ● ■ Π ▶ ≑ ആ 6) 🗛 🔳 📕 <u>K</u> 🛱 🖄 🗮 🛍					
<u>T</u> itle:		Unidentified <u>p</u> eaks					
Retention time settings	Amount interpretation	Global calibration settings					
□ Use recently detected retention times	Dimension of amounts:	Mode: Total					
of last Sample 🔽 Options	Reference inject volume:	✓ Auto Recalibrate					
Peak retention time determination:	Use inject volume of first standard	Recalibrate					
Use <u>a</u> bsolute greatest signal value	C <u>Fixed:</u> 20.0 🖵 μί	Curve Fitting: Normal					
 Use relative greatest signal value over the baseline 		Dual-Column Separate Calibration					
Dead/Delay time(s)	Blank Run & Matrix Blank Sub	Blank Run & Matrix Blank Subtraction					
Dead time: min	No blank run subtraction						
	Subtract recent blank run s	C Subtract recent blank run sample in corresponding sequence					
2nd Detector <none></none>	min C Subtract a fixed sample:	Bro <u>w</u> se					
3rd Detector <none></none>	min						
	Enable matrix <u>b</u> lank subtra	ction					

<u>General:</u> ใช้ส<u>ำ</u>หรับใส่หน่วยความเข้มข้นในช่อง Dimension of amount เช่น ppm, ppb เป็นต้น

รูปที่ 12 แสดงหน้า General ในเมนู QNT.Editor

<u>Detection:</u> ใช้ส<u>ำ</u>หรับตั้งก่าต่างๆก่อนที่ peak จะนำไปคำนวณหาปริมาณ เช่นการ integrate peak ให้ ใส่ที่ช่อง parameter name เช่น minimum area หรือ valley to valley โดย click ที่ช่อง Param.Name แล้วกดที่ลูกศรเพื่อเลือก parameterที่ต้องการ แล้วกำหนดก่าตัวเลขหรือ on, off

ในช่อง param. Value ในช่อง Ret. Time ให้ใส่เวลาเพื่อให้เครื่องเลือกทำการ integrate peak ช่วง ใหน

รูปที่ 13 แสดงหน้า Detection ในเมนู QNT.Editor <u>Peak Table</u> :ใช้ส<u>ำ</u>หรับกำหนดชื่อ Peak ต่างๆ โดย Double click ที่ peak ที่ต้องการแล้วใส่ชื่อที่ช่อง Component

🔽 File Edit View Workspace Qualification Window Help													
C) 🚅 🖬 📲 🛅	a 🕹 🕹	R N?	b Ţ	• =	►	≑ 🚳 🤅		I			● At At	
No.	Peak Name	Ret.Time	Window	Standard	Int.Type	Cal.Type	Peak Type	Group	Amount Vial 1	Amount Vial 2	Amount Vial 3	Amount Vial 4	Comment
1	Arginine	1.900 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
2	Hydroxylysine	3.233 min	0.050 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
3	Lysine	3.633 min	0.010 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
4	GABA	3.883 min	0.050 AG	External	Area	LOff	Auto				2.500000	12.500000	
5	Alanine	6.533 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
6	Threonine	6.967 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
7	Glycine	7.700 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
8	Valine	8.817 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
9	Hydroxyproline	10.050 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
10	Serine	10.600 min	0.030 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
11	Proline	11.050 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
12	Isoleucine	14.517 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
13	Leucine	15.867 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
14	Methionine	17.583 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
15	Histidine	25.850 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
16	Phenylalanine	27.500 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
17	Glutamate	28.550 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
18	Aspartate	28.967 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
19	Cystime	30.283 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	
20) Tyrosine	34.150 min	0.100 AG	External	Area	LOff	Auto		2.500000	12.500000	2.500000	2.500000	

รูปที่ 14 แสดงหน้า Peak Table_ในเมนู QNT.Editor

Properties of Peak No. 9							
Component: Retention:	Hydroxyproline	min					
Width: Peak Type:	BMb	min <u> </u>					
Height:	214.56	nC					
Area. Amount:	1.000						

รูปที่ 15 แสดงการใส่ชื่อสารตรงตำแหน่ง peak นั้นๆ

<u>Amount Table</u>: ใช้ส<u>ำ</u>หรับใส่ความเข้มข้นของสารมาตรฐานเพื่อนำไปสร้างกราฟมาตรฐานถ้ามี มากกว่า 1ความเข้มข้นให้ click ขวาที่ช่อง Column กด edit amount columns จะปรากฏ standard ทั้งหมดที่ run ไว้ ให้เลือกมาทั้งหมด แล้วกด Auto-Generate กด Apply กด OK

Edit Amount Columns	X
Assign Standards on the basis of: Name Add, remove, or double-click to rename, Amou Select an Amount Column	 Int Columns below Standards (drag & drop between columns) Std50x+20ppmGABA Std100x+10ppmGABA Std200x+5ppmGABA Std200x+2.5ppmGABA Std500x+2ppmGABA Std500x+2ppmGABA
	OK Cancel

รูปที่ 16 แสดงการใส่ความเข้มข้นของสารมาตรฐาน

<u>จัดเก็บ QNT</u>.file: โดยเลือก save หรือ save as

- <u>การดูผลการวิเคราะห์</u>
 - : ที่หน้า Browser ให้เลือก sequence ที่สนใจ
 - : ดูผลการวิเคราะห์ โดย double click ที่ชื่อ sample
 - : ผลการวิเคราะห์จะถูกเปิดมาที่หน้า Integration ซึ่งจะแสดง Chromatogramและ Report table ดังรูป

รูปที่ 17 แสดงผลการวิเคราะห์

- <u>การพิมพ์ผลการวิเคราะห์</u>
 - เมื่อดูผลการวิเคราะห์แล้วให้เลือก View > Printer layout

- เถือก file> Print

11. การบำรุงรักษาเครื่องมือเบื้องต้น

11.1 การตรวจสอบประสิทธิภาพของ inlet valve และ outlet valve ของ Pump (4 ครั้ง/เดือน)

- 1. ถอด inlet valve และ outlet valve ตรงบริเวณหัวปั้ม
- 2.ทำความสะอาค โดยล้างด้วยน้ำกลั่นหลายๆครั้ง
- 3. ทิ้งให้แห้งแล้วใส่กลับเข้าไปใหม่
- 4. Test ระบบ โดยกด pump ให้ flow ผ่านระบบ สังเกตโดยจะต้องไม่มีฟองอากาศและ Pressure จะต้องนิ่ง

11.2 ตรวจสอบความเที่ยงของอัตราการใหล ทำดังนี้

- 1. เตรียมสารมาตรฐานตามวิธีทดสอบนั้นๆที่ความเข้มข้นที่จุดตรงกลางของ calibration curve
- 2. สั่งเครื่อง inject สารจำนวน 5 ครั้ง
- 3. ตรวจสอบค่า RT ของสารมาตรฐานทั้ง 5 ครั้ง
- 4. ค่า RT ต้องมี % RSD ไม่เกิน 1 % RT

11.3 การตรวจสอบประสิทธิภาพของ Auto Injector (1ครั้ง/6เดือน)

- 1. เตรียมสารมาตรฐานตามวิธีทดสอบนั้นๆที่ความเข้มข้นที่จุดตรงกลางของ calibration curve
- 2. สั่งเครื่อง inject สารจำนวน 5 ครั้ง
- 3. ตรวจสอบก่าพื้นที่ใต้หรือกวามสูงของ peak ของสารมาตรฐานทั้ง 5 ครั้ง
- 4. ต้องมีค่า RSD ไม่เกินเกณฑ์ตามที่กำหนดไว้ดังตารางข้างล่างนี้

Concentration	RSD
100%	1.3
10%	2.8
1%	2.7
1000mg/L	3.7
100 mg/L	5.3
10 mg/L	7.3
l mg/L	11
100µg/L	15
10 µg/L	21
1 μg/L	30

Reference: Anal.Chem AOAC Peer Verified Method Program, 1993

11.4 การตรวจสอบประสิทธิภาพของ column (1ครั้ง/6เดือน)

เตรียมสารมาตรฐานตามวิธีทคสอบนั้นๆอย่างน้อยสองชนิดผสมกันที่กวามเข้มข้นที่จุดตรงกลางของ calibration curve

- 2. สั่งเครื่อง inject สารจำนวน 5 ครั้ง
- 3. peak symmetry จะต้องอยู่ในช่วง 0.9- 1
- 4. peak ทั้งสองตัวจะต้องแยกออกจากกันอย่างชัดเจน

11.5 การตรวจสอบประสิทธิภาพของ Detector (1ครั้ง/6เดือน)

- 1. ทำการ clean up system ตามApplication นั้นๆ
- 2. ตรวจสอบค่า Base line จะต้องมีค่า Total signal ไม่เกินค่าที่กำหนด
- 3. เตรียมสารมาตรฐานตามที่ความเข้มข้นที่จุดตรงกลางของ calibration curve
- 4. สั่งเครื่อง inject สารจำนวน 5 ครั้ง
- 5. ตรวจสอบค่า signal ของสารมาตรฐานทั้ง 5 ครั้ง
- 6. เปรียบเทียบค่า signal กับครั้งก่อนควรจะได้ค่าใกล้เคียงกัน

11.6 ตรวจสอบประสิทธิภาพของ nut และ ferrule

- 1. สั่งเครื่อง run ระบบแล้วตรวจสอบรอยต่อทุกจุด
- 2. ถ้ามีจุดไหนรั่วให้เปลี่ยน nut และFerrule ใหม่

11.7 Operational Qualification/Performance Verification (OQ/PV)

ทดสอบประสิทธิภาพของเครื่องทั้งหมดโดยเจ้าหน้าที่จากบริษัท

12 ขั้นตอนการปิดเครื่อง

- 12.1 ปิด program ที่เปิดให้หมดโดยเรียงตามลำดับดังนี้ EC/conductivity Detector, Detector compartment,
 Pump
- 12.2 ปิด software โดยclick ที่ Chromeleon server รูปกิ้งก่าสีเขียวมุมล่างขวามือ กด stop รอจนขึ้นคำว่า Chromeleon server is not running แล้วกด close ปิด computer ตามลำดับ
- 12.3 ปิดตัวเครื่องทั้งหมด
- 12.4 ปิด stabilizer ปิด gas
- 12.5 เก็บ column ใน Eluent ที่ใช้ run แล้วปิดหัวท้ายให้แน่นไม่ให้อากาศเข้าไป
- 12.6 ล้างสายทุกสายในระบบด้วยน้ำ DI water
- 12.7 ถ้าไม่ได้ใช้งานเป็นอาทิตย์ ให้ถอด working electrode Reference electrodeและ Suppressor เก็บให้ เรียบร้อย แล้วPlug ตรงรอยต่อทุกจุด
- 12.8 ทำความสะอาคอุปกรณ์